Fabricius, Ida L. (2000): Interpretation of burial history and rebound from loading experiments and occurrence of microstylolites in mixed sediments of Caribbean sites 999 and 1001. Texas A & M University, Ocean Drilling Program, College Station, TX, United States, In: Leckie, R. Mark, Sigurdsson, Haraldur, Acton, Gary D., Abrams, Lewis J., Bralower, Timothy J., Carey, Steven N., Chaisson, William P., Cotillon, Pierre, Cunningham, Andrew D., D'Hondt, Steven L., Droxler, Andre W., Galbrun, Bruno, Gonzalez, Juan, Haug, Gerald H., Kameo, Koji, King, John W., Lind, Ida L., Louvel, Veronique, Lyons, Timothy W., Murray, Richard W., Mutti, Maria, Myers, Greg, Pearce, Richard B., Pearson, D. Graham, Peterson, Larry C., Roehl, Ursula, Garman, Phyllis (editor), Proceedings of the Ocean Drilling Program, scientific results, Caribbean Ocean history and the Cretaceous/Tertiary boundary event; covering Leg 165 of the cruises of the drilling vessel JOIDES Resolution, Miami, Florida, to San Juan Puerto Rico, sites 998-1002, 19 December 1995-17 February 1996, 165, 177-190, georefid:2000-062888

Compaction curves for 11 samples from the mixed sediments and calcareous chalk with clay from the Caribbean Sites 999 and 1001 are discussed with reference to compaction curves for calcareous ooze and chalk of the Ontong Java Plateau (Leg 130). The burial history is discussed from preconsolidation data and present burial conditions and suggests a removal of approximately 400 m of sediment at the hiatus 166 meters below seafloor (mbsf) at Site 1001. This interpretation predicts a previous burial to >500 mbsf for depth intervals containing microstylolites, which corresponds to observations at Sites 999 and 807 (Ontong Java Plateau). Thus, data from three sites from two widely separate regions indicate that microstylolites in carbonates form at minimum burial depths deeper than 500 m. No direct link between formation of microstylolites and cementation was found, suggesting that dissolution and precipitation are not necessarily related. Porosity rebound during core retrieval could not be detected for soft sediments, whereas a porosity rebound of approximately 2% was deduced for deeper, cemented intervals. Comparing the compaction curves, two distinct rates of porosity loss are noted: (1) samples dominated by clay (>45% insoluble residue) compact at a higher rate than samples dominated by fine-grained carbonate and (2) fine-grained carbonate-supported samples (with <45% insoluble residue) compact at the same rate irrespective of the content of nonsupporting microfossils or pore-filling clay.
West: -78.4422 East: -74.5436 North: 15.4524 South: 12.4437
Expedition: 165
Site: 165-1001
Site: 165-999
Data access:
Provider: SEDIS Publication Catalogue
Data set link: http://sedis.iodp.org/pub-catalogue/index.php?id=10.2973/odp.proc.sr.165.006.2000 (c.f. for more detailed metadata)
Data download: application/pdf
This metadata in ISO19139 XML format