Chevallier, Johanna et al. (2005): Seismic sequence stratigraphy and tectonic evolution of southern Hydrate Ridge

ODP 204


Chevallier, Johanna
Oregon State University, College of Oceanic and Atmospheric Sciences, Corvallis, OR, United States

Trehu, Anne M.
Christian-Albrechts-Universitaet zu Kiel, Federal Republic of Germany

Bangs, Nathan L.
Joint Oceanographic Institutions, United States

Johnson, Joel E.
University of Texas at Austin, United States

Meyer, H. Jack
University of Leicester, United Kingdom

Seismic sequence stratigraphy and tectonic evolution of southern Hydrate Ridge
In: Trehu, Anne M., Bohrmann, Gerhard, Torres, Marta E., Rack, Frank R., Bangs, Nathan L., Barr, Samantha R., Borowski, Walter S., Claypool, George E., Collett, Timothy S., Delwiche, Mark E., Dickens, Gerald R., Goldberg, David S., Gracia, Eulalia, Guerin, Gilles, Holland, Melanie, Johnson, Joel E., Lee, Young-Joo, Liu, Char-Shine, Long, Philip E., Milkov, Alexei V., Riedel, Michael, Schultheiss, Peter, Su Xin, Teichert, Barbara, Tomaru, Hitoshi, Vanneste, Maarten, Watanabe, Mahito, Weinberger, Jill L., Boetius, Antje, Brockman, Fred J., Deyhle, Annette, Fehn, Udo, Flemings, Peter B., Girguis, Peter R., Heesemann, Martin, Joye, Samantha B., Lorenson, Thomas D., Mills, Christopher T., Musgrave, Robert J., Popa, Radu, Ussler, Bill, Wilkes, Heinz, Winckler, Gisela, Winters, William J., Proceedings of the Ocean Drilling Program; scientific results; drilling gas hydrates on Hydrate Ridge, Cascadia continental margin; covering Leg 204 of the cruises of the drilling vessel JOIDES Resolution; Victoria, British Columbia, Canada, to Victoria, British Columbia, Canada; Sites 1244-1252; 7 July-2 September 2002
Texas A&M University, Ocean Drilling Program, College Station, TX, United States
This paper presents a seismic sequence and structural analysis of a high-resolution three-dimensional seismic reflection survey that was acquired in June 2000 in preparation for Ocean Drilling Program (ODP) Leg 204. The seismic data were correlated with coring and logging results from nine sites drilled in 2002 during Leg 204. The stratigraphic and structural evolution of this complex accretionary ridge through time, as inferred from seismic-stratigraphic units and depositional sequences imaged by the seismic data, is presented as a series of interpreted seismic cross sections and horizon time or isopach maps across southern Hydrate Ridge. Our reconstruction starts at approximately 1.2 Ma with a shift of the frontal thrust from seaward to landward vergent and thrusting of abyssal plain sediments over the older deformed and accreted units that form the core of Hydrate Ridge. From approximately 1.0 to 0.3 Ma, a series of overlapping slope basins with shifting depocenters was deposited as the main locus of uplift shifted northeastward. This enigmatic landward migration of uplift may be related to topography on the subducted plate, which is now deeply buried beneath the upper slope and shelf. The main locus of uplift shifted west to its present position at approximately 0.3 Ma, probably in response to a change to a seaward-vergent frontal thrust and related sediment underplating and duplexing. This structural and stratigraphic history has influenced the distribution of gas hydrate and free gas by causing variable age and permeability of sediments beneath and within the gas hydrate stability zone, preferential pathways for fluid migration, and varying amounts of decompression and gas dissolution.
Coverage:Geographic coordinates:
West:-125.0900East: -125.0400

Stratigraphy; Applied geophysics; Cascadia subduction zone; Cenozoic; East Pacific; geophysical methods; geophysical profiles; geophysical surveys; Hydrate Ridge; Leg 204; lithostratigraphy; Neogene; North Pacific; Northeast Pacific; Ocean Drilling Program; Pacific Ocean; Pleistocene; Pliocene; Quaternary; seismic methods; seismic profiles; sequence stratigraphy; surveys; tectonics; Tertiary; upper Quaternary;