Lyle, Annette Olivarez and Lyle, Mitchell (2006): Organic carbon and barium in Eocene sediments; possible controls on nutrient recycling in the Eocene Equatorial Pacific Ocean

Leg/Site/Hole:
ODP 199
Identifier:
2007-028676
georefid

10.2973/odp.proc.sr.199.222.2006
doi

Creator:
Lyle, Annette Olivarez
Boise State University, Department of Geoscience, Boise, ID, United States
author

Lyle, Mitchell
Boise State University, United States
author

Identification:
Organic carbon and barium in Eocene sediments; possible controls on nutrient recycling in the Eocene Equatorial Pacific Ocean
2006
In: Wilson, Paul A., Lyle, Mitchell W., Janecek, Thomas R., Backman, Jan, Busch, William H., Coxall, Helen K., Faul, Kristina, Gaillot, Philippe, Hovan, Steven A., Knoop, Peter, Kruse, Silke, Lanci, Luca, Lear, Caroline, Moore, Theodore C., Nigrini, Catherine A., Nishi, Hiroshi, Nomura, Ritsuo, Norris, Richard D., Palike, Heiko, Pares, Josep M., Quintin, Lacie, Raffi, Isabella, Rea, Brice R., Steiger, Torsten H., Tripati, Aradhna, Vanden Berg, Michael D., Wade, Bridget, Proceedings of the Ocean Drilling Program; scientific results; Paleogene equatorial transect; covering Leg 199 of the cruises of the drilling vessel JOIDES Resolution; Honolulu, Hawaii, to Honolulu, Hawaii; Sites 1215-1222; 23 October-16 December 2001
Texas A&M University, Ocean Drilling Program, College Station, TX, United States
199
We present the first high-resolution organic carbon mass accumulation rate (MAR) data set for the Eocene equatorial Pacific upwelling region, from Sites 1218 and 1219 of the Ocean Drilling Program. A maximum Corg MAR anomaly appears at 41 Ma and corresponds to a high carbonate accumulation event (CAE). Independent evidence suggests that this event (CAE-3) was a time of rapid cooling. Throughout the Eocene, organic carbon burial fluxes were an order of magnitude lower than fluxes recorded for the Holocene. In contrast, the expected organic carbon flux, calculated from the biogenic barium concentrations for these sites, is roughly equal to modern. A sedimentation anomaly appears at 41 Ma, when both the measured and the expected organic carbon MAR increases by a factor of two-three relative to the background Eocene fluxes. The rain of estimated Corg and barium from the euphotic zone to the sediments increased by factors of three and six, respectively. We suggest that the discrepancy between the expected and measured Corg in the sediments is a direct consequence of the increased metabolic rates of all organisms throughout the Eocene oceans and sediments. This hypothesis is supported by recent work in ecology and biochemical kinetics that recognizes the fundamental basis of ecology as following from the laws of thermodynamics. This dependence is now elucidated as the Universal Temperature Dependence (UTD) "law" of metabolism and can be applied to all organisms over their biologically relevant temperature range. The general pattern of organic carbon and barium deposition throughout the Eocene is consistent with the UTD theory. In particular, the anomaly at 41 Ma (CAE-3) is associated with rapid cooling, an event that triggered slower metabolic rates for all organisms, slower recycling of organic carbon in the water and sediment column, and, consequently, higher deposition of organic carbon in the sediments. This "metabolism-based" scenario is consistent with the sedimentation patterns we observe for both Sites 1218 and 1219.
English
Serial
Coverage:Geographic coordinates:
North:26.0500
West:-148.0000East: -135.0000
South:7.4500

Stratigraphy; Geochemistry of rocks, soils, and sediments; alkaline earth metals; anomalies; barium; carbon; carbonates; Cenozoic; controls; Eocene; Equatorial Pacific; geochemistry; Leg 199; marine sediments; metals; nutrients; Ocean Drilling Program; organic carbon; Pacific Ocean; paleo-oceanography; paleoenvironment; Paleogene; sediments; Tertiary;

.