SEDIS - Publications
SEDIS Home
Home
Login
Thy, Peter (2007): Igneous petrology of gabbros from Hole 1105A; oceanic magma chamber processes
Leg/Site/Hole:
Related Expeditions:
ODP 179
ODP 179 1105
Identifier:
ID:
2007-044955
Type:
georefid
ID:
10.2973/odp.proc.sr.179.017.2003
Type:
doi
Creator:
Name:
Thy, Peter
Affiliation:
University of California at Davis, Department of Geology, Davis, CA, United States
Role:
author
Identification:
Title:
Igneous petrology of gabbros from Hole 1105A; oceanic magma chamber processes
Year:
2007
Source:
In: Casey, John F., Pettigrew, Tom, Miller, D. Jay, Araki, Eiichiro, Boissonnas, Remi, Busby, Robert, Einaudi, Florence, Gerdom, Martin, Guo, Zhong Ping, Hoskins, Hartley, Myers, Greg, Rao, Dasari Gopala, Shibata, Tsugio, Thy, Peter, Proceedings of the Ocean Drilling Program; scientific results; covering Leg 179 of the cruises of the drilling vessel JOIDES Resolution; Atlantis Bank, Southwest Indian Ridge; Sites 1104-1107; 9 April-7 June 1998
Publisher:
Texas A&M University, Ocean Drilling Program, College Station, TX, United States
Volume:
179
Issue:
Pages:
Abstract:
Hole 1105A penetrated 158 m of gabbros at a site offset 1.3 km east-northeast from Hole 735B on the Atlantis Bank near the Atlantis II Fracture Zone. A total of 118 m of dominantly medium- to coarse-grained intercalated Fe-Ti oxide gabbro and olivine gabbro was recovered from Hole 1105A that shows many petrographic features similar to those recovered from the upper part of Hole 735B. The main rock types are distinguished based on the constituent cumulus phases, with the most primitive gabbros consisting of olivine, plagioclase, and clinopyroxene. The inferred crystallization order is subsequently Fe-Ti oxides (ilmenite and titanomagnetite), followed by orthopyroxene, then apatite, and finally biotite. Orthopyroxene appears to replace olivine in a narrow middle interval. The magmatic evolution is likewise reflected in the mineral compositions. Plagioclase varies from An (sub 66) to An (sub 28) . Olivine varies from Fo (sub 78) to Fo (sub 35) . The gap in olivine crystallization occurs between Fo (sub 46) and Fo (sub 40) and coincides approximately with the appearance of orthopyroxene ( approximately En (sub 50) ). The clinopyroxenes show large compositional variation in Mg/(Mg+Fe (sub total) ) from 0.84 to 0.51. The nonquadrilateral cations of clinopyroxene similarly show large variations with Ti increasing for the olivine gabbros and decreasing for the Fe-Ti oxide gabbros with the decrease in Mg/(Mg+Fe (sub total) ). The apatites are mainly fluorapatites. The compositional variation in the gabbros is interpreted as a comagmatic suite resulting from fractional crystallization. Pyroxene geothermometry suggests equilibration temperatures from 1100 degrees C and below. The coexisting Fe-Ti oxide minerals indicate subsolidus equilibration temperatures from 900 degrees C for olivine gabbros to 700 degrees C for the most evolved apatite-bearing gabbros. The cryptic variation in the olivine gabbros defines two or three lenses, 40 to 60 m thick, each characterized by a distinct convex zoning with a lower segment indicating upward reverse fractionation, a central maximum, and an upper segment showing normal fractionation. The Fe-Ti oxide gabbros show cryptic variations independent of the host olivine gabbros and reveal a systematic upward normal fractionation trend transgressing host olivine gabbro boundaries. Forward fractional crystallization modeling, using a likely parental magma composition from the Atlantis II Fracture Zone (MgO = 7.2 wt%; Mg/[Mg+Fe (super 2+) ] = 0.62), closely matches the compositions of coexisting olivine, plagioclase, and clinopyroxene. This modeling suggests cosaturation of olivine, plagioclase, and clinopyroxene from 1155 degrees C and the addition of Fe-Ti oxides from 1100 degrees C. The liquid line of descent initially shows increasing FeO with moderately increasing SiO (sub 2) . After saturation of Fe-Ti oxides, the liquid strongly decreases in FeO and TiO (sub 2) and increases in SiO (sub 2) , reaching dacitic compositions at approximately 10% liquid remaining. The calculations indicate that formation of olivine gabbros can be accounted for by <65% fractionation and that only the residual 35% liquid was saturated in Fe-Ti oxides. The modeling of the solid fractionation products shows that both the olivine gabbro and the Fe-Ti oxide gabbros contain very small amounts of trapped liquid (<5%). The implications are that the gabbros represent crystal mush that originated in a recharging and tapping subaxial chamber. Compaction and upward melt migration in the crystal mush appear to have been terminated with relatively large amounts of interstitial liquid remaining in the upper parts of the cumulate mush. This termination may have been caused by tectonic disturbances, uplift, and associated withdrawal of magma into the subaxial dike and sill system. Prolonged compaction and cooling of the trapped melt in the mush formed small differentiated bodies and lenses by pressure release migration and crystallization along syntectonic channels. This resulted in differentiation products along lateral and vertical channelways in the host gabbro that vary from olivine gabbro, to Fe-Ti oxide gabbro, gabbronorite, and apatite gabbros and show large compositional variations independent of the host olivine gabbros.
Language:
English
Genre:
Serial
Rights:
URL:
http://www-odp.tamu.edu/publications/179_SR/VOLUME/CHAPTERS/SR179_02.PDF
Coverage:
Geographic coordinates:
North:-32.4308
West:57.1639
East: 57.1639
South:-32.4308
Keywords:
Igneous and metamorphic petrology; crystallization; gabbros; igneous rocks; Indian Ocean; Leg 179; lithosphere; magma chambers; magmas; mineral composition; nesosilicates; Ocean Drilling Program; ocean floors; oceanic lithosphere; ODP Site 1105; olivine; olivine group; orthosilicates; plutonic rocks; quantitative analysis; silicates; Southwest Indian Ridge;
.
Copyright © 2006-2007 IODP-MI