Hayward, Bruce W. et al. (2010): Cenozoic record of elongate, cylindrical, deep-sea benthic Foraminifera in the Indian Ocean (ODP Sites 722, 738, 744, 758, and 763)

Leg/Site/Hole:
ODP 117
ODP 119
ODP 121
ODP 122
ODP 117 722
ODP 119 738
ODP 119 744
ODP 121 758
ODP 122 763
Identifier:
2010-037732
georefid

10.2113/gsjfr.40.2.113
doi

Creator:
Hayward, Bruce W.
Geomarine Research, Auckland, New Zealand
author

Sabaa, Ashwaq T.
Yale University, United States
author

Thomas, Ellen
Shimane University, Japan
author

Kawagata, Shungo
Carleton University, Canada
author

Nomura, Ritsuo
Indian Institute of Technology, India
author

Schroeder-Adams, Claudia
author

Gupta, Anil K.
author

Johnson, Katie
author

Identification:
Cenozoic record of elongate, cylindrical, deep-sea benthic Foraminifera in the Indian Ocean (ODP Sites 722, 738, 744, 758, and 763)
2010
Journal of Foraminiferal Research
Cushman Foundation for Foraminiferal Research, Ithaca, NY, United States
40
2
113-133
A group of approximately 100 species of elongate, cylindrical deep-sea benthic foraminifera (families Stilostomellidae, Pleurosto-mellidae, Nodosariidae) with complex, often constricted apertural structures, became extinct during increasingly cold glacial periods in the late Pliocene to mid-Pleistocene Climate Transition (MPT, approximately 2.6-0.6 Ma). We document the evolutionary history and architecture of this Extinction Group (Ext. Gp) through the Cenozoic at four lower bathyal-upper abyssal Indian Ocean sites (ODP 722, 744/738, 758, 763), seeking clues to the cause of this morphologically-targeted extinction episode late in the Cenozoic. Eighty percent of the 116 Ext Gp. species present in the Cenozoic of the Indian Ocean originated globally in the Eocene or earlier, compared with 23-37% of other Quaternary deep-sea foraminifera. The Ext. Gp had its peak species richness and relative and absolute abundances in the late Eocene. The rapid warming of the Paleocene-Eocene Thermal Maximum, that resulted in a loss of 30-50% of deep-sea foraminiferal species, had no impact on the Ext. Gp in the one Indian Ocean section (ODP 744/738) studied. Major Cenozoic changes in the Ext. Gp, including increased species turnover, changes in dominant species, a decline in abundance, loss in diversity, and finally extinction, mostly occurred during the middle Eocene to early Oligocene, middle to late Miocene, and late Pliocene to middle Pleistocene. These were times of stepped increase in the volume of polar ice, global oceanic cooling, surface-water eutrophication, seasonality of phytoplankton production, deep-water ventilation, and southern deep-water carbonate corrosiveness. The final decline and disappearance of the Ext. Gp began in the late Miocene at high latitudes (744/738), but not until the late Pliocene (758, 763) or MPT (722) at lower latitudes. We hypothesize that the loss of the Ext. Gp of deep-sea foraminifera may have been caused by the decline or demise of their specific food source (detrital phytoplankton or bottom-dwelling microbes) that was abundant in the Greenhouse World and was decimated by the stepwise cooling, ventilation, or eutrophication of the oceans that began in the middle and late Eocene.
English
Serial
Coverage:Geographic coordinates:
North:16.3719
West:59.4745East: 112.1232
South:-62.4233

Invertebrate paleontology; Arabian Sea; benthic taxa; Cenozoic; deep-sea environment; Exmouth Plateau; extinction; Foraminifera; Indian Ocean; Invertebrata; Kerguelen Plateau; Leg 117; Leg 119; Leg 121; Leg 122; marine environment; microfossils; morphology; Ninetyeast Ridge; Ocean Drilling Program; ODP Site 722; ODP Site 738; ODP Site 744; ODP Site 758; ODP Site 763; Paleocene-Eocene Thermal Maximum; paleoclimatology; paleoecology; paleoenvironment; Paleogene; Protista; SEM data; Southern Ocean; Tertiary;

.