Wright, James D. and Miller, Kenneth G. (1996): Control of North Atlantic deep water circulation by the Greenland-Scotland Ridge

Leg/Site/Hole:
Identifier:
2000-075072
georefid

10.1029/95PA03696
doi

Creator:
Wright, James D.
Lamont-Doherty Earth Observatory, Palisades, NY, United States
author

Miller, Kenneth G.
Rutgers University, United States
author

Identification:
Control of North Atlantic deep water circulation by the Greenland-Scotland Ridge
1996
Paleoceanography
American Geophysical Union, Washington, DC, United States
11
2
157-170
Coherent bathymetric features along the Reykjanes Ridge indicate that there were significant changes in the flux of buoyant material within the Icelandic Hot Spot during the Neogene. The radial extent of the topographic swell associated with this hot spot is of the order of 1000 to 2000 km, and therefore these changes affected the Greenland-Scotland Ridge (GSR). At present, sill depths along the GSR are generally less than 500 m with the deepest passage being less than 1000 m, making the overflow water sensitive to even small changes in the ridge depths. Reconstructions of Neogene mantle plume activity correlate with the deepwater circulation patterns in the North Atlantic. Times of high mantle plume activity caused Northern Component Water (NCW) production to cease. NCW fluxes resumed once this phase of high mantle plume activity slowed. The long-term climate change during the Neogene must be controlled by factors other than NCW production. However, climatic optima during the late early Miocene and early Pliocene appear to have been augmented by high NCW fluxes, while subsequent middle Miocene and "middle" Pliocene coolings correlate with uplifts on the GSR and reduced NCW flux. We suggest that reductions in NCW may have contributed to both of these cooling events. Copyright 1996 by the American Geophysical Union.
English
Coverage:Geographic coordinates:
North:70.0000
West:-30.0000East: -5.0000
South:60.0000

Stratigraphy; Arctic region; Atlantic Ocean; bathymetry; C-13/C-12; carbon; Cenozoic; deep-water environment; Europe; geophysical profiles; geophysical surveys; Great Britain; Greenland; hot spots; isotope ratios; isotopes; lower Miocene; lower Pliocene; mid-ocean ridges; Miocene; Neogene; North Atlantic; ocean circulation; ocean floors; paleo-oceanography; paleocurrents; plate tectonics; Pliocene; Reykjanes Ridge; Scotland; seismic profiles; stable isotopes; surveys; Tertiary; United Kingdom; uplifts; Western Europe;

.