Soares, Duarte M. et al. (2012): The breakup sequence and associated lithospheric breakup surface; their significance in the context of rifted continental margins (west Iberia and Newfoundland margins, North Atlantic)

Leg/Site/Hole:
ODP 103
ODP 149
ODP 173
ODP 210
DSDP 47
Identifier:
2013-033490
georefid

10.1016/j.epsl.2012.08.036
doi

Creator:
Soares, Duarte M.
Cardiff University, School of Earth, Ocean and Planetary Sciences, Cardiff, United Kingdom
author

Alves, Tiago M.
Instituto Portugues do Mar e da Atmosfera, Portugal
author

Terrinha, Pedro
author

Identification:
The breakup sequence and associated lithospheric breakup surface; their significance in the context of rifted continental margins (west Iberia and Newfoundland margins, North Atlantic)
2012
Earth and Planetary Science Letters
Elsevier, Amsterdam, Netherlands
355-356
311-326
Regional (2D) seismic-reflection profiles and borehole data are used to characterize the syn- to post-rift transition in the shallow offshore Porto Basin, and in deep-offshore regions of West Iberia and Newfoundland (eastern Canada). The interpreted data highlight the development of a regional stratigraphic surface at the time of complete lithospheric breakup between West Iberia and Newfoundland. This surface, usually called "breakup unconformity", is renamed in this work as Lithospheric Breakup Surface (LBS), on the basis that: (1) it is not always developed as an unconformity and (2) all lithosphere is involved on the breakup process, not only the continental crust. Depositional changes occur across the LBS in association with late Aptian lithospheric breakup, which is marked by the deposition of a breakup sequence (BS) rather than a single stratigraphic surface. Stratigraphic correlations between strata in shallow and deeper parts of the two margins lead us to propose the breakup sequence (BS) as representing the transitional period between lithospheric breakup and the establishment of thermal relaxation as the main process controlling subsidence on divergent continental margins. The results in this work are important for other continental margins as they demonstrate that during lithospheric breakup significant quantities of sediment bypassed the inner proximal margins of West Iberia and Newfoundland on their way to the outer proximal margin. In addition, the interpreted data show that complete lithospheric breakup between conjugate margins is recorded by similar tectono-stratigraphic events. In Iberia and Newfoundland, these events are associated with reservoir successions in sediment overfilled basins and with carbon-rich strata ("black shales") in sediment-starved basins. Abstract Copyright (2012) Elsevier, B.V.
English
Serial
Coverage:Geographic coordinates:
North:44.0000
West:-18.0000East: -8.0000
South:40.0000

Solid-earth geophysics; Applied geophysics; active margins; Albian; Aptian; Atlantic Ocean; Canada; continental margin; correlation; Cretaceous; Deep Sea Drilling Project; Eastern Canada; Europe; Galicia Bank; geophysical profiles; Iberian abyssal plain; Iberian Peninsula; IPOD; Leg 103; Leg 149; Leg 173; Leg 210; Leg 47; lithosphere; Lower Cretaceous; Mesozoic; Newfoundland; Newfoundland and Labrador; Newfoundland Basin; North Atlantic; Northeast Atlantic; Northwest Atlantic; Ocean Drilling Program; passive margins; plate divergence; plate tectonics; Porto Basin; progradation; rifting; sea-level changes; sedimentary rocks; seismic profiles; Southern Europe; transgression; unconformities;

.