Iturrino, G. J.; Goldberg, D.; Glassman, H.; Patterson, D.; Sun, Y. F.; Guerin, G.; Haggas, S. L. (2005): Shear-wave anisotropy from dipole shear logs in oceanic crustal environments. Geological Society of London, London, United Kingdom, In: Harvey, Peter K. (editor), Brewer, Tim S. (editor), Pezard, Phillipe A. (editor), Petrov, Vladislav A. (editor), Petrophysical properties of crystalline rocks, 240, 117-131, georefid:2006-008638

Abstract:
The deployment of a down-hole dipole shear sonic tool in Hole 395A and Hole 735B marked the first two opportunities to measure high-resolution shear-wave velocity and V (sub S) anisotropy profiles in oceanic crustal rocks. In Hole 395A near the Kane Fracture Zone, dipole sonic logs were recorded from 100-600 mbsf, and allow azimuthal anisotropy to be determined as a function of depth in the crust. The magnitude of V (sub S) anisotropy varies with depth, from less than 3.2% in low-porosity flows at the bottom of the hole, to approximately 15.5% in highly fractured pillow basalts and breccias. The orientation of the fast V (sub S) direction also varies over depth, with a mean value between 75 degrees N and 80 degrees E, and aligns with the strike of steeply dipping structures observed by down-hole electrical and acoustic images. This fast V (sub S) angle orientation is locally oblique to the plate-spreading direction and to the Mid-Atlantic Ridge axis. In Hole 735B, drilled near the Atlantis Fracture Zone, dipole sonic logs from 23 to 596 mbsf indicate that V (sub S) anisotropy varies with depth, with averages of 5.3% in the foliated and deformed gabbros recovered at the bottom of the hole; 4.5% in undeformed olivine and oxide-rich gabbros around 300 mbsf; and 6.8% in highly deformed mylonitic zones at shallow depths. The fast V (sub S) angle also varies with depth, giving a mean orientation of approximately S45 degrees E for well-resolved estimates in the upper interval of the hole. This direction aligns with the strike of steeply dipping fractures observed by down-hole imaging, and is locally oblique to the Southwest Indian ridge axis. Although the effects of regional stresses and local deformation of these holes may introduce anisotropy in the dipole sonic data, we conclude that crustal morphology in the vicinity of the holes contributes significantly to the magnitude and orientation of V (sub S) anisotropy.
Coverage:
West: -46.0454 East: 57.1618 North: 22.4521 South: -32.4327
Relations:
Expedition: 118
Site: 118-735
Expedition: 174B
Expedition: 176
Site: 176-735
Data access:
Provider: SEDIS Publication Catalogue
Data set link: http://sedis.iodp.org/pub-catalogue/index.php?id=2006-008638 (c.f. for more detailed metadata)
This metadata in ISO19139 XML format