Wolf-Welling, Thomas C. W.; Cowan, Ellen A.; Daniels, James; Eyles, Nicholas; Maldonado, Andres; Pudsey, Carol J. (2002): Diffuse spectral reflectance data from rise sites 1095, 1096, and 1101 and Palmer Deep sites 1098 and 1099 (Leg 178, western Antarctic Peninsula). Texas A&M University, Ocean Drilling Program, College Station, TX, United States, In: Baker, Peter F. (editor), Camerlenghi, Angelo (editor), Acton, Gary D. (editor), Brachfeld, Stefanie A., Cowan, Ellen A., Daniels, James, Domack, Eugene W., Escutia, Carlota, Evans, Andrew J., Eyles, Nicholas, Guyodo, Yohan J. B., Hatfield, Kate L., Iorio, Marina, Iwai, Masao, Kyte, Frank T., Lauer, Christine, Maldonado, Andres, Moerz, Tobias, Osterman, Lisa E., Pudsey, Carol J., Schuffert, Jeffrey D., Sjunneskog, Charlotte M., Weinheimer, Amy L., Williams, Trevor, Winter, Diane M., Wolf-Welling, Thomas C. W., Ramsay, Anthony T. S. (editor), Proceedings of the Ocean Drilling Program, scientific results, Antarctic glacial history and sea-level change; covering Leg 178 of the cruises of the drilling vessel JOIDES Resolution; Punta Arenas, Chile, to Cape Town, South Africa; sites 1095-1103; 5 February-9 April 1998, 178, georefid:2003-022416

The routine use of spectrophotometry on the sediment surfaces of archive halves of each section during the onboard sedimentological core description process is a great stride toward development of real-time noninvasive characterization of deep-sea sediments. Spectral reflectance data have been used so far for mineral composition studies as well as for lithostratigraphic correlation between sites (Balsam and Deaton, 1991; Balsam et al., 1997; Mix et al., 1995; Ortiz et al., 1999). Their results demonstrate that spectrophotometry can estimate CaCO3 content by using the 4.65-, 5.25-, and 5.55-mu m wavelength spectrums. A detailed overview of various other noninvasive methods is given in Ortiz and Rack (1999). The purpose of this study is to test whether spectrophotometry in the visible band can be used as a tool to gather further information about grain-size variation, sorting, compaction, and porosity, which are directly linked to the sedimentation process. From remote sensing data analyses, it is known that diffuse spectral reflectance data in the visible band in the wavelength window of 7.0-6.5 mu m are sensitive to grain-size variations. It appears that a relationship between grain size and signal absorption exists only in this wavelength window. (e.g., Clark, 1999; Gaffey, 1986; Gaffey et al., 1993). Variations in grain size during a sedimentation process are linked to depositional energy, which affects sorting, compaction, and porosity of sediment deposits. As an example, we study here the spectrophotometric data of the sedimentary sequence of Hole 1098C, which was deposited under widely varying environmental conditions. Alternating turbidite and finely laminated sediments were recovered from Hole 1098C. The turbidites are related to a high depositional energy environment; the finely laminated sediments are related to a low depositional energy environment. Data from Hole 1098C were therefore used to test whether the spectral reflectance data can provide a proxy for these different depositional environments.
West: -78.2916 East: -64.1228 North: -64.2220 South: -67.3401
Expedition: 178
Site: 178-1095
Site: 178-1096
Site: 178-1098
Site: 178-1099
Site: 178-1101
Supplemental Information:
Data report; available only on CD-ROM in PDF format and on the Web in PDF or HTML; access date Feb. 24, 2002
Data access:
Provider: SEDIS Publication Catalogue
Data set link: http://sedis.iodp.org/pub-catalogue/index.php?id=10.2973/odp.proc.sr.178.225.2001 (c.f. for more detailed metadata)
Data download: application/pdf
This metadata in ISO19139 XML format