Kreitz, S. F.; Herbert, T. D.; Schuffert, J. D. (2000): Alkenone paleothermometry and orbital-scale changes in sea-surface temperature at Site 1020, Northern California margin. Texas A & M University, Ocean Drilling Program, College Station, TX, United States, In: Lyle, Mitchell, Koizumi, Itaru, Richter, Carl, Behl, Richard J., Boden, Per, Caulet, Jean-Pierre, Delaney, Margaret L., deMenocal, Peter, Desmet, Marc, Fornaciari, Eliana, Hayashida, Akira, Heider, Franz, Hood, Julie A., Hovan, Steven A., Janecek, Thomas R., Janik, Aleksandra G., Kennett, James P., Lund, David, Machain Castillo, Maria L., Maruyama, Toshiaki, Merrill, Russell B., Mossman, David J., Pike, Jennifer, Ravelo, A. Christina, Rozo Vera, Gloria A., Stax, Rainer, Tada, Ryuji, Thurow, Juergen W., Yamamoto, Masanobu, Nessler, Susan (editor), Miller, Christine M. (editor), Peters, Lorri L. (editor), Proceedings of the Ocean Drilling Program, scientific results, California margin; covering Leg 167 of the cruises of the drilling vessel JOIDES Resolution, Acapulco, Mexico, to San Francisco, California, sites 1010-1022, 20 April-16 June 1996, 167, 153-161, georefid:2000-080026

Abstract:
U (super k') (sub 37) sea-surface temperature (SST) estimates obtained at approximately 2.5-k.y. resolution from Ocean Drilling Program Site 1020 show glacial-interglacial cyclicity with an amplitude of 7 degrees -10 degrees C over the last 780 k.y. This record shows a similar pattern of variability to another alkenone-based SST record obtained previously from the Santa Barbara Basin. Both records show that oxygen isotope Stage (OIS) 5.5 was warmer by approximately 3 degrees C relative to the present and that glacial U (super k') (sub 37) temperatures warm in advance of deglaciation, as inferred from benthic delta (super 18) O records. The alkenone-based SST record at Site 1020 is longer than previously published work along the California margin. We show that warmer than present interglacial stages have occurred frequently during the last 800 k.y. Alkenone concentrations, a proxy for coccolithophorid productivity, indicate that sedimentary marine organic carbon content has also varied significantly over this interval, with higher contents during interglacial periods. A baseline shift to warmer SST and greater alkenone content occurs before OIS 13. We compare our results with those from previous multiproxy studies in this region and conclude that SST has increased by approximately 5 degrees C since the last glacial period (21 ka). Our data show that maximum alkenone SSTs occur simultaneously with minimum ice volume at Site 1020, which is consistent with data from farther south along the margin. The presence of sea ice in the glacial northeast Pacific, the extent of which is inferred from locations of ice-rafted debris, provides further support for our notion of cold surface water within the northern California Current system, averaging 7 degrees -8 degrees C cooler during peak glacial conditions. The cooling of surface water during glacial stages most likely did not result from enhanced upwelling because alkenone concentrations and terrestrial redwood pollen assemblages are consistently lower during glacial periods.
Coverage:
West: -126.2604 East: -126.2604 North: 41.0003 South: 41.0003
Relations:
Expedition: 167
Site: 167-1020
Data access:
Provider: SEDIS Publication Catalogue
Data set link: http://sedis.iodp.org/pub-catalogue/index.php?id=10.2973/odp.proc.sr.167.213.2000 (c.f. for more detailed metadata)
Data download: application/pdf
This metadata in ISO19139 XML format