Menviel, L.; Timmermann, A.; Timm, O. Elison; Mouchet, A. (2011): Deconstructing the last glacial termination; the role of millennial and orbital-scale forcings. Elsevier, International, Quaternary Science Reviews, 30 (9-10), 1155-1172, georefid:2013-034521

Abstract:
Using an Earth system model of intermediate complexity forced by continuously varying boundary conditions and a hypothetical profile of freshwater forcing, the model simulates Heinrich event 1 (H1), the Bolling warm period, the Older Dryas, the Antarctic Cold Reversal (ACR) and the Younger Dryas in close agreement with paleo-proxy data from different regions worldwide. The ACR can be simulated as the bipolar seesaw response to the AMOC recovery during the termination of H1. However, this study also demonstrates that the amplitude of the ACR can be further amplified by a rapid deglacial retreat of the Antarctic Ice sheets. We suggest that melting from both, the Laurentide and the Antarctic Ice sheets contributed to the sea level rise associated with Meltwater Pulse 1-A (MWP-1A). It is hypothesized that the northern hemispheric source of MWP-1A caused the Older Dryas cooling in the Northern Hemisphere, whereas the Southern Hemispheric source contributed to the ACR. The study also documents that for the majority of paleo-climate proxies considered here, the relative timing can be qualitatively reproduced by the transient modeling experiments. The climate model solution presented here may provide a means to further constrain dating uncertainties of some of paleo-climate proxies during the Last Glacial Termination.
Coverage:
West: -120.0212 East: -1.5719 North: 36.0154 South: -41.0000
Relations:
Expedition: 146
Site: 146-893
Expedition: 161
Site: 161-977
Expedition: 165
Site: 165-1002
Expedition: 202
Site: 202-1233
Data access:
Provider: SEDIS Publication Catalogue
Data set link: http://sedis.iodp.org/pub-catalogue/index.php?id=10.1016/j.quascirev.2011.02.005 (c.f. for more detailed metadata)
This metadata in ISO19139 XML format