Tivey, M.; Farr, N.; Ware, J.; Pontbriand, C. (2011): Results from an integrated optical/acoustic communication system installed at CORK 857D; implications for future seafloor observatories. American Geophysical Union, Washington, DC, United States, In: Anonymous, AGU 2011 fall meeting, 2011, georefid:2012-039970

Abstract:
A CORK (Circulation Obviation Retrofit Kit) borehole represents all of the basic components required for a seafloor observatory: a stable environment for long-term continuous measurements of earth and ocean phenomena, access to a unique environment below the seafloor under controlled conditions (e.g. hydrologically sealed), and a standard interface for communication. Typically, however, due to power constraints and a limited frequency of data download opportunities, data sampling has been limited to rates on the order of several minutes. For full seismic wave sampling, at least 1 Hz or better is required. While some CORK systems are now being connected to an underwater cable to provide continuous power and real-time data (cf. Neptune network in the Northeast Pacific), there will be locations where cabled observatories are not viable. Another mode of communication is required to enable both high data rate communication and access for data download via more conventional vessels and not limited to those with ROV or submersibles. We here report on technology to enable high data rate download and transfer of data and information using underwater optical communications, which can be accomplished from a surface vessel of opportunity or, in the future, by autonomous underwater vehicle. In 2010, we successfully deployed and tested an underwater optical communication system that provides high data rate communications over a range of 100 meters from a deep sea CORK borehole observatory located in the northeast Pacific at IODP Hole 857D. The CORK is instrumented with a thermistor string and pressure sensors that record downhole formation pressures and temperatures within oceanic basement and is pressure sealed from the overlying water column. The seafloor Optical Telemetry System (OTS) was plugged into the CORK's existing underwater matable connector to provide an optical and acoustic communication interface and additional data storage and battery power for the CORK to sample at 1 Hz data-rate, an increase over the normal 15 sec data sample rate. A CTD-mounted OTS lowered by wire from a surface ship established an optical communication link at 100 meters range at rates of 1, 5 and 10 Mbps with no bit errors. This mode of communication demonstrates the effectiveness of using a ship-based system to interrogate the system remotely. The OTS was designed to be installed at the seafloor CORK for a year. In 2011, we will revisit the CORK and OTS using the ROV Jason to test the system, download the data collected during this period and to refurbish the batteries for a further year-long deployment period. We will report on the results of those tests at the meeting. As the need to observe oceanic and earth phenomenon over periods not limited to weather windows or cruise schedules increases, the borehole observatory will provide an important venue for gaining access to such timescales. High data-rate underwater communications will be required to make full use of such observatory infrastructure. The use of free water optical communication methods provides a logical way to accomplish these goals in the future.
Coverage:
West: -128.4248 East: -128.4239 North: 48.2631 South: 48.2628
Relations:
Expedition: 139
Site: 139-857
Expedition: 146
Expedition: 169
Site: 169-857
Data access:
Provider: SEDIS Publication Catalogue
Data set link: http://sedis.iodp.org/pub-catalogue/index.php?id=2012-039970 (c.f. for more detailed metadata)
This metadata in ISO19139 XML format