Abstract:
Shear fault-bend folding produces ramp anticlines with very distinctive shapes. They are characterized by long, gentle backlimbs that dip less than the fault ramp, in contrast with classical fault-bend folding. Backlimb dips and limb lengths increase progressively with fault slip, by a combination of limb rotation and kink-band migration. We summarize and apply two simple end-member theories of shear fault-bend folding involving a weak decollement layer of finite thickness at the base of ramp: (1) simple-shear fault-bend folding, in which the layer undergoes an externally imposed bedding-parallel simple shear with no basal fault, and (2) pure-shear fault-bend folding in which this basal layer slides above a basal fault and shortens and thickens above the ramp, with no externally applied bed-parallel simple shear. In the limit of large displacement, the fold geometry in pregrowth strata approaches the geometry of classical fault-bend folding, with a backlimb dip that approaches the ramp dip. However, even in these cases, growth strata may record the history of limb rotation that is characteristic of a shear fault-bend fold heritage. We demonstrate that these theories are in agreement with well-imaged seismic examples from the Nankai Trough and Cascadia accretionary wedges, which show substantial shears (40-65 degrees ) over stratigraphic intervals of a few hundred meters.