Abstract:
Cenozoic palaeoceanography of the Maude Rise, Weddell Sea, Antarctica, has been investigated using Palaeocene to Quaternary deep-sea ostracod faunas from 23 samples of ODP Site 689. The abundance of ostracods is high enough only during the Palaeogene (Palaeocene-Oligocene) to allow palaeoceanographical inferences based on changes in diversity, dominance, endemism and faunal turnover (first and last occurrences). The abundance is particularly high throughout the Palaeocene and Eocene, but declines irreversibly near the Eocene/Oligocene boundary. The diversity increases more or less continuously from the Early Palaeocene to the Middle Eocene, and then it generally decreases throughout the remaining part of the Palaeogene (Middle Eocene-Oligocene); an exception is a positive peak in the Shannon-Weaver index in a single sample in the Late Oligocene. No positive peaks in diversity and taxa originations (first occurrences) at c. 40-38 Ma, occurs at Site 689; so the site provides no evidence for the establishment of the psychrosphere at this time. This corroborates similar regional results from an earlier study of benthonic foraminifera. Explanations for this may be related to Late Eocene-Early Oligocene changes in sedimentology and clay-mineralogy (associated with the progressive cooling of the Antarctica) which could have negatively affected abundance and diversity locally at Site 689. Alternatively, by this time, the ostracod fauna could also have been subjected to selective removal (with possible local extinction) of taxa (due to increased ventilation) or to thanatocoenosis dissolution (due to a decrease in temperature and availability of CaCO (sub 3) ). A further possibility may be related to the fact that Site 689 was at intermediate water depths and may have remained within older water masses near the Eocene/Oligocene boundary. Failing these explanations, the results could indicate that the Late Eocene-Early Oligocene palaeoenvironmental changes in the world oceans were more gradual and occurred over a longer time interval than the global ostracod data show, at least at southern high latitudes.