Williams, Trevor; Pirmez, Carlos (2000): FMS images from carbonates of the Bahama Bank slope, ODP Leg 166; lithological identification and cyclo-stratigraphy. Texas A & M University, Ocean Drilling Program, College Station, TX, United States, In: Swart, Peter K., Eberli, Gregor P., Malone, Mitchell J., Anselmetti, Flavio S., Arai, Kohsaku, Bernet, Karin H., Betzler, Christian, Christensen, Beth A., De Carlo, Eric Heinen, Dejardin, Pascale M., Emmanuel, Laurent, Frank, Tracy D., Haddad, Geoffrey A., Isern, Alexandra R., Katz, Miriam E., Kenter, Jeroen A. M., Kramer, Philip A., Kroon, Dick, McKenzie, Judith A., McNeill, Donald F., Montgomery, Paul, Nagihara, Seiichi, Pirmez, Carlos, Reijmer, John J. G., Sato, Tokiyuki, Schovsbo, Niels H., Williams, Trevor, Wright, James D., Lowe, Ginny (editor), Proceedings of the Ocean Drilling Program, scientific results, Bahamas Transect; covering Leg 166 of the cruises of the drilling vessel JOIDES Resolution, San Juan, Puerto Rico, to Balboa Harbor, Panama, sites 1003-1009, 17 February-10 April 1996, 166, 77-88, georefid:2001-002886

Abstract:
Ocean Drilling Program (ODP) Leg 166 cored a transect of holes through the prograding carbonate sequences that form the western slope of the Great Bahama Bank, with the aim of detailing the relationship between the sequences and changes in sea-level over the last 25 Ma. A total of 1200 m of FMS resistivity images from Site 1003 (lower slope) and Site 1005 (mid-slope) were divided into three image facies types, with the aid of calibration against the recovered core. Type 1 was conductive (poorly cemented) sediment dominated by pelagic components, Type 2 was resistive (well cemented) sediment dominated by platform (neritic) components, and Type 3 was highly resistive (very well cemented) sediment, usually calciturbidites but occasionally hardgrounds. Much of the section is composed of metre-scale alternations between Type 1 and Type 2 sediment. We have used the cycle thicknesses in the Middle Miocene to obtain a sedimentation rate curve and to refine the biostratigraphy. The cyclicity is modulated by the precessional astronomical cycle. The FMS images were used to evaluate the lithostratigraphic position and significance of prominent isolated uranium peaks. The peaks tend to occur just below the tops of calci-turbidite-rich units, sometimes coincident with sequence boundaries and maximum flooding surfaces.
Coverage:
West: -79.4500 East: -79.0000 North: 25.0000 South: 23.3000
Relations:
Expedition: 166
Supplemental Information:
Reprinted from Geological Society Special Publications, London, Vol. 159, p. 227-238, 1999
Data access:
Provider: SEDIS Publication Catalogue
Data set link: http://sedis.iodp.org/pub-catalogue/index.php?id=2001-002886 (c.f. for more detailed metadata)
Data download: application/pdf
This metadata in ISO19139 XML format