Johnson, Joel E.; Goldfinger, Chris; Trehu, Anne M.; Bangs, Nathan L. B.; Torres, Marta E.; Chevallier, Johanna (2005): North-south variability in the history of deformation and fluid venting across Hydrate Ridge, Cascadia Margin. Texas A&M University, Ocean Drilling Program, College Station, TX, United States, In: Trehu, Anne M., Bohrmann, Gerhard, Torres, Marta E., Rack, Frank R., Bangs, Nathan L., Barr, Samantha R., Borowski, Walter S., Claypool, George E., Collett, Timothy S., Delwiche, Mark E., Dickens, Gerald R., Goldberg, David S., Gracia, Eulalia, Guerin, Gilles, Holland, Melanie, Johnson, Joel E., Lee, Young-Joo, Liu, Char-Shine, Long, Philip E., Milkov, Alexei V., Riedel, Michael, Schultheiss, Peter, Su Xin, Teichert, Barbara, Tomaru, Hitoshi, Vanneste, Maarten, Watanabe, Mahito, Weinberger, Jill L., Boetius, Antje, Brockman, Fred J., Deyhle, Annette, Fehn, Udo, Flemings, Peter B., Girguis, Peter R., Heesemann, Martin, Joye, Samantha B., Lorenson, Thomas D., Mills, Christopher T., Musgrave, Robert J., Popa, Radu, Ussler, Bill, Wilkes, Heinz, Winckler, Gisela, Winters, William J., Proceedings of the Ocean Drilling Program; scientific results; drilling gas hydrates on Hydrate Ridge, Cascadia continental margin; covering Leg 204 of the cruises of the drilling vessel JOIDES Resolution; Victoria, British Columbia, Canada, to Victoria, British Columbia, Canada; Sites 1244-1252; 7 July-2 September 2002, 204, georefid:2007-035091

Abstract:
Hydrate Ridge is an accretionary thrust ridge located on the lower slope of the central Cascadia convergent margin. Structural mapping based on two-dimensional and three-dimensional multichannel seismic reflection profiles and gridded bathymetry coupled with deep-towed sidescan sonar data and Ocean Drilling Program (ODP) biostratigraphy suggests that seafloor fluid venting patterns are likely controlled by the seaward-vergent (SV) structural style at northern Hydrate Ridge (NHR) and by the dominantly landward-vergent (LV) structural style at southern Hydrate Ridge (SHR). North-south structural variability across Hydrate Ridge is coincident with the seafloor authigenic carbonate distribution, which varies from aerially extensive authigenic carbonate crusts at NHR to a minor focused occurrence of authigenic carbonate at SHR. The older stratigraphy exposed at the seafloor at NHR (>1.6-1.7 Ma) has likely been subjected to a longer history of sediment compaction, dewatering, and deformation than the younger slope basin strata preserved at SHR (1.7 Ma to recent), suggesting the extent of carbonates at NHR may result from a longer history of fluid flow and/or more intense venting through a more uplifted, lithified, and fractured NHR sequence. Furthermore, recent work at SHR shows that the major seafloor fluid venting site there is fed by fluid flow through a volcanic ash-bearing turbidite sequence, suggesting stratigraphic conduits for fluid flow may be important in less uplifted, LV-dominated portions of Hydrate Ridge. In addition, the variability in structural style observed at Hydrate Ridge may have implications for the distributions and concentrations of fluids and gas hydrates in other accretionary settings and play a role in the susceptibility of accretionary ridges to slope failure.
Coverage:
West: -125.0900 East: -125.0400 North: 44.3500 South: 44.3400
Relations:
Expedition: 204
Supplemental Information:
Available only on CD-ROM in PDF format and on the Web in PDF or HTML
Data access:
Provider: SEDIS Publication Catalogue
Data set link: http://sedis.iodp.org/pub-catalogue/index.php?id=10.2973/odp.proc.sr.204.125.2006 (c.f. for more detailed metadata)
Data download: application/pdf
This metadata in ISO19139 XML format