Hillenbrand, Claus-Dieter; Fuetterer, Dieter K. (2002): Neogene to Quaternary deposition of opal on the continental rise west of the Antarctic Peninsula, ODP Leg 178, sites 1095, 1096, and 1101. Texas A&M University, Ocean Drilling Program, College Station, TX, United States, In: Baker, Peter F. (editor), Camerlenghi, Angelo (editor), Acton, Gary D. (editor), Brachfeld, Stefanie A., Cowan, Ellen A., Daniels, James, Domack, Eugene W., Escutia, Carlota, Evans, Andrew J., Eyles, Nicholas, Guyodo, Yohan J. B., Hatfield, Kate L., Iorio, Marina, Iwai, Masao, Kyte, Frank T., Lauer, Christine, Maldonado, Andres, Moerz, Tobias, Osterman, Lisa E., Pudsey, Carol J., Schuffert, Jeffrey D., Sjunneskog, Charlotte M., Weinheimer, Amy L., Williams, Trevor, Winter, Diane M., Wolf-Welling, Thomas C. W., Ramsay, Anthony T. S. (editor), Proceedings of the Ocean Drilling Program, scientific results, Antarctic glacial history and sea-level change; covering Leg 178 of the cruises of the drilling vessel JOIDES Resolution; Punta Arenas, Chile, to Cape Town, South Africa; sites 1095-1103; 5 February-9 April 1998, 178, georefid:2003-022418

Abstract:
Neogene to Quaternary records of biogenic opal contents and opal accumulation rates are presented for Sites 1095, 1096, and 1101, which were drilled during Ocean Drilling Program Leg 178 in the Bellingshausen Sea, a marginal sea in the eastern Pacific sector of the Southern Ocean. The opal records in the drift sediments on the continental rise west of the Antarctic Peninsula provide signals of paleoproductivity, although they are influenced by dissolution in the water column and the sediment column. Opal contents at Sites 1095, 1096, and 1101 show similar long-term trends through the Neogene and Quaternary, whereas the opal accumulation rates exhibit marked discrepancies, which are caused by local differences in opal preservation linked to local variations of bottom current-induced supply of lithogenic detritus. We used a regression describing the relationship between opal preservation and sedimentation rate to extract the signal of primary opal deposition on the seafloor in the Bellingshausen Sea from the opal accumulation in the drift deposits. On long-term timescales, the reconstructed opal depositional rates show patterns similar to those of the opal contents and a much better coherency between the different locations on the Antarctic Peninsula continental rise. Therefore, the estimated opal depositional rates are suggested to represent a suitable proxy for paleoproductivity in the drift setting of the Bellingshausen Sea. Supposing that the sea-ice coverage within the Antarctic Zone was the main factor controlling biological productivity in the Bellingshausen Sea, and thus the estimated opal depositional rates on the continental rise, we reconstructed paleoceanographic long-term changes during the Neogene and Quaternary considering the climatic control on regional and global scales. Slightly enhanced opal depositional rates during the late Miocene are interpreted to indicate warmer climatic conditions in the vicinity of the Antarctic Peninsula than at present. The contribution of heat from the Northern Component Water (NCW) into the Southern Ocean seems only to have played a subordinate role during that time. High opal depositional rates during the early Pliocene document a strong reduction of sea-ice coverage and relatively warm climatic conditions in the Bellingshausen Sea.
Coverage:
West: -78.2916 East: -70.1540 North: -64.2220 South: -67.3401
Relations:
Expedition: 178
Site: 178-1095
Site: 178-1096
Site: 178-1101
Supplemental Information:
Available only on CD-ROM in PDF format and on the Web in PDF or HTML; access date Feb. 24, 2002
Data access:
Provider: SEDIS Publication Catalogue
Data set link: http://sedis.iodp.org/pub-catalogue/index.php?id=10.2973/odp.proc.sr.178.215.2001 (c.f. for more detailed metadata)
Data download: application/pdf
This metadata in ISO19139 XML format