Nagihara, Seiichi; Wang, Kelin (2000): Geothermal regime of the western margin of the Great Bahama Bank. Texas A & M University, Ocean Drilling Program, College Station, TX, United States, In: Swart, Peter K., Eberli, Gregor P., Malone, Mitchell J., Anselmetti, Flavio S., Arai, Kohsaku, Bernet, Karin H., Betzler, Christian, Christensen, Beth A., De Carlo, Eric Heinen, Dejardin, Pascale M., Emmanuel, Laurent, Frank, Tracy D., Haddad, Geoffrey A., Isern, Alexandra R., Katz, Miriam E., Kenter, Jeroen A. M., Kramer, Philip A., Kroon, Dick, McKenzie, Judith A., McNeill, Donald F., Montgomery, Paul, Nagihara, Seiichi, Pirmez, Carlos, Reijmer, John J. G., Sato, Tokiyuki, Schovsbo, Niels H., Williams, Trevor, Wright, James D., Lowe, Ginny (editor), Proceedings of the Ocean Drilling Program, scientific results, Bahamas Transect; covering Leg 166 of the cruises of the drilling vessel JOIDES Resolution, San Juan, Puerto Rico, to Balboa Harbor, Panama, sites 1003-1009, 17 February-10 April 1996, 166, 113-120, georefid:2001-002889

Abstract:
The geothermal regime of the western margin of the Great Bahama Bank was examined using the bottom hole temperature and thermal conductivity measurements obtained during and after Ocean Drilling Program (ODP) Leg 166. This study focuses on the data from the drilling transect of Sites 1003 through 1007. These data reveal two important observational characteristics. First, temperature vs. cumulative thermal resistance profiles from all the drill sites show significant curvature in the depth range of 40 to 100 mbsf. They tend to be of concave-upward shape. Second, the conductive background heat-flow values for these five drill sites, determined from deep, linear parts of the geothermal profiles, show a systematic variation along the drilling transect. Heat flow is 43-45 mW/m (super 2) on the seafloor away from the bank and decreases upslope to approximately 35 mW/m (super 2) . We examine three mechanisms as potential causes for the curved geothermal profiles. They are: (1) a recent increase in sedimentation rate, (2) influx of seawater into shallow sediments, and (3) temporal fluctuation of the bottom water temperature (BWT). Our analysis shows that the first mechanism is negligible. The second mechanism may explain the data from Sites 1004 and 1005. The temperature profile of Site 1006 is most easily explained by the third mechanism. We reconstruct the history of BWT at this site by solving the inverse heat conduction problem. The inversion result indicates gradual warming throughout this century by approximately 1 degrees C and is agreeable to other hydrographic and climatic data from the western subtropic Atlantic. However, data from Sites 1003 and 1007 do not seem to show such trends. Therefore, none of the three mechanisms tested here explain the observations from all the drill sites. As for the lateral variation of the background heat flow along the drill transect, we believe that much of it is caused by the thermal effect of the topographic variation. We model this effect by obtaining a two-dimensional analytical solution. The model suggests that the background heat flow of this area is approximately 43 mW/m (super 2) , a value similar to the background heat flow determined for the Gulf of Mexico in the opposite side of the Florida carbonate platform.
Coverage:
West: -79.4500 East: -79.0000 North: 25.0000 South: 23.0000
Relations:
Expedition: 166
Site: 166-1003
Site: 166-1004
Site: 166-1005
Site: 166-1006
Site: 166-1007
Data access:
Provider: SEDIS Publication Catalogue
Data set link: http://sedis.iodp.org/pub-catalogue/index.php?id=10.2973/odp.proc.sr.166.123.2000 (c.f. for more detailed metadata)
Data download: application/pdf
This metadata in ISO19139 XML format