Abstract:
Frictional properties within the upper few kilometers of subduction zones are generally thought to inhibit rupture propagation. Understanding whether large rapid slip propagates to the surface during megathrust earthquakes is important for characterizing tsunami hazard. Recent vitrinite reflectance analysis by Sakaguchi et al. (2011) on cores from the NanTroSEIZE drilling transect at the Nankai Trough, Japan, has been interpreted to suggest that these faults reached temperatures approximately 380 degrees C, considerably larger than background temperature values, implying they hosted coseismic slip at shallow depths. Analysis of other temperature proxies on the megasplay by Hirono et al. (2009), however, suggests temperatures have not exceeded 300 degrees C and is inconclusive as to whether the fault slipped at high velocity. We evaluate the effects of frictional heat generation on the spatial distribution of vitrinite reflectance, its sensitivity to slip zone thickness and slip duration, and the cumulative effects of numerous events. We build on the analysis of Sakaguchi et al. (2011) by estimating frictional heating scenarios that are consistent with both the peak and spatial extent of anomalous vitrinite reflectance data. Our results imply coseismic slip magnitudes of several 10 s of meters. Peak temperature estimates from the vitrinite reflectance data can be reconciled with the other geochemical constraints only by assuming the vitrinite reflectance results from the cumulative effects of multiple earthquakes. However, this results in unrealistically large estimates of total displacement. Our results imply that current understanding of how vitrinite reflectance is affected by fault slip is incomplete. Abstract Copyright (2012) Elsevier, B.V.